Mutual Information Analysis with Similarity Measure
نویسندگان
چکیده
Discussion and analysis about relative mutual information has been carried out through fuzzy entropy and similarity measure. Fuzzy relative mutual information measure (FRIM) plays an important part as a measure of information shared between two fuzzy pattern vectors. This FRIM is analyzed and explained through similarity measure between two fuzzy sets. Furthermore, comparison between two measures is also carried out.
منابع مشابه
Information Quantification Application to Management with Fuzzy Entropy and Similarity Measure
Verification of efficiency in data management fuzzy entropy and similarity measure were discussed and verified by applying reliable data selection problem and numerical data similarity evaluation. In order to calculate the certainty or uncertainty fuzzy entropy and similarity measure are designed and proved. Designed fuzzy entropy and similarity are considered as dissimilarity measure and simil...
متن کاملHierarchical Clustering Using Mutual Information
We present a method for hierarchical clustering of data called mutual information clustering (MIC) algorithm. It uses mutual information (MI) as a similarity measure and exploits its grouping property: The MI between three objects X, Y, and Z is equal to the sum of the MI between X and Y , plus the MI between Z and the combined object (XY ). We use this both in the Shannon (probabilistic) versi...
متن کاملEvaluation of Similarity Measures for Template Matching
Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...
متن کاملAnalysis of Reliability and Impact Factors of Mutual Information Similarity Criterion for Remote Sensing Imagery Template Matching
Reliability of similarity measure is a key factor for successful image matching. In this paper, mutual information is introduced to template image matching as a similarity measure. Its ability of adapting to different scene, overcoming the grey reversal, and factors which influence on the successful matching of mutual information method are discussed. These factors include signal-noise ratio, i...
متن کاملOptimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps
Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Fuzzy Logic and Intelligent Systems
دوره 10 شماره
صفحات -
تاریخ انتشار 2010